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bstract

The Kadomtsev–Petviashvili (KP) equation describes weakly dispersive and small amplitude waves propagating in a quasi-two-
imensional situation. Recently a large variety of exact soliton solutions of the KP equation has been found and classified. Those
oliton solutions are localized along certain lines in a two-dimensional plane and decay exponentially everywhere else, and they
re called line-soliton solutions in this paper. The classification is based on the far-field patterns of the solutions which consist of
finite number of line-solitons. In this paper, we study the initial value problem of the KP equation with V- and X-shape initial
aves consisting of two distinct line-solitons by means of the direct numerical simulation. We then show that the solution converges

symptotically to some of those exact soliton solutions. The convergence is in a locally defined L2-sense. The initial wave patterns
onsidered in this paper are related to the rogue waves generated by nonlinear wave interactions in shallow water wave problem.

2010 IMACS. Published by Elsevier B.V. All rights reserved.
adomtsev–Petviashvili equation; Soliton solutions; Chord diagrams; Pseudo-spectral method; Window technique

. Introduction

The KdV equation may be obtained in the leading order approximation of an asymptotic perturbation theory for
ne-dimensional nonlinear waves under the assumptions of weak nonlinearity (small amplitude) and weak dispersion
long waves). The initial value problem of the KdV equation has been extensively studied by means of the method of
nverse scattering transform (IST). It is then well-known that a general initial data decaying rapidly for large spatial
ariable evolves into a sum of individual solitons and some weak dispersive wave trains separate away from solitons
see for examples [1,17,19,24,5]).

In 1970, Kadomtsev and Petviashvili [9] proposed a two-dimensional dispersive wave equation to study the stability
f one soliton solution of the KdV equation under the influence of weak transversal perturbations. This equation is now
eferred to as the KP equation, and considered to be a prototype of the integrable nonlinear dispersive wave equations in
wo dimensions. The KP equation can be also represented in the Lax form, that is, there exists a pair of linear equations
ssociated with the eigenvalue problem and the evolution of the eigenfunctions. However, unlike the case of the KdV
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

quation, the method of IST based on the pair of linear equations does not seem to provide a practical method for the
nitial value problem with non-periodic waves considered in this paper. At the present time, there is no feasible analytic

ethod to solve the initial value problem of the KP equation with initial waves having line-solitons in the far field.
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In this paper, we study this type of the initial value problem of the KP equation by means of the direct numerical
simulation. In particular, we consider the following two cases of the initial waves: In the first case, the initial wave
consists of two semi-infinite line-solitons forming a V-shape pattern, and in the second case, the initial wave is given
by a linear combination of two infinite line-solitons forming X-shape. Those initial waves have been considered in
the study of the generation of large amplitude waves in shallow water [20,22,13,25]. The main result of this paper
is to show that the solutions of the initial value problem with those initial waves asymptotically converge to some of
the exact soliton solutions found in [2,3]. This implies a separation of the (exact) soliton solution from the dispersive
radiations in the similar manner as in the KdV case.

The paper is organized as follows: in Section 2, we provide a brief summary of the soliton solutions of the KP
equation and the classification theorem obtained in [2,3] for those soliton solutions as a background necessary for the
present study. In particular, we introduce the parametrization of each soliton solution with a chord diagram which
represents a derangement of the permutation group, i.e. permutation without fixed point.

In Section 3, we present several exact soliton solutions, and describe some properties of those solutions. Each of
those soliton solutions has N+ numbers of line-solitons in a far field on the two-dimensional plane, say in y � 0, and
N− numbers of line-solitons in the far field of the opposite side, i.e. y � 0. This type of soliton solution is referred to
as a (N−, N+)-soliton solution. Here we consider those solitons with N− + N+ ≤ 4 and N− ≤ 3.

In Section 4, we describe the numerical scheme used in this paper, which is based on the pseudo-spectral method
combined with the window technique [21,23]. The window technique is especially used to compute our non-periodic
problem which is essentially an infinite domain problem.

In Section 5, we present the numerical results of the initial value problems with V- and X-shape initial waves,
and show that the solutions asymptotically converge to some of those exact solutions discussed in Section 3. The

convergence is in the sense of locally defined L2-norm with the form, ‖f‖L2(D):=
(∫∫

D
|f (x, y)|2 dx dy

)1/2
, where

D ⊂ R2 is a compact set which covers the main structure describing the (resonant) interactions in the solution. We also
propose a method to identify an exact solution for a given initial wave with V- or X-shape pattern based on the chord
diagrams introduced in the classification theory. Then, in Section 6, we conclude the paper with a brief summary of
our results.

2. Background

Here we give a brief summary of the recent result of the classification theorem for soliton solutions of the KP
equation (see [12,2,3] for the details). In particular, each soliton solution is then parametrized by a chord diagram
which represents a unique element of the permutation group. We use this parametrization throughout the paper.

2.1. The KP equation

The KP equation is a two-dimensional nonlinear dispersive wave equation given by

∂x

(
4∂tu + 6u∂xu + ∂3

xu
)

+ 3∂2
yu = 0, (2.1)

where ∂n
xu:=∂nu/∂xn, etc. Let us express the solution in the form,

u(x, y, t) = 2 ∂2
x ln τ(x, y, t). (2.2)

where the function τ is called the tau function, which plays a central role in the KP theory. In this paper, we consider
a class of the solutions, where each solution can be expressed by τ(x, y, t) in the Wronskian determinant form τ =
Wr(f1, . . . , fN ), i.e.∣∣∣∣ f1 f ′

1 · · · f
(N−1)
1

∣∣∣∣
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

τ(x, y, t) =
∣∣∣∣∣∣∣
f2 f ′

2 · · · f
(N−1)
2

...
...

. . .
...

fN f ′
N · · · f

(N−1)
N

∣∣∣∣∣∣∣
, (2.3)

dx.doi.org/10.1016/j.matcom.2010.05.025
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ith f
(j)
n :=∂

j
xfn for n = 1, . . . , N. Here the functions {f1, . . . , fN} form a set of linearly independent solutions of the

inear equations,

∂yfn = ∂2
xfn, ∂tfn = −∂3

xfn.

The fact that (2.2) with (2.3) gives a solution of the KP equation is well-known and the proof can be found in several
laces, e.g. see [8,3].) The solution of those equations can be expressed in the Fourier transform,

fn(x, y, t) =
∫

C

ekx+k2y−k3t ρn(k) dk, n = 1, 2, . . . , N, (2.4)

ith an appropriate contour C in C and the measure ρn(k) dk. In particular, we consider a finite dimensional solution
ith ρn(k) dk =∑M

m=1 an,mδ(k − km) dk with an,m ∈R, i.e.

fn(x, y, t) =
M∑

m=1

an,mEm(x, y, t) with Em = exp(kmx + k2
my − k3

mt).

hus this type of solution is characterized by the parameters {k1, k2, . . . , kM} and the N × M matrix A:=(an,m) of
ank(A) = N, that is, we have

(f1, f2, . . . , fN ) = (E1, E2, . . . , EM)AT . (2.5)

ote that {E1, E2, . . . , EM} gives a basis of RM and {f1, f2, . . . , fN} spans an N-dimensional subspace of RM . This
eans that the A-matrix can be identified as a point on the real Grassmann manifold Gr(N, M) (see [12,3]). More

recisely, let MN×M(R) be the set of all N × M matrices of rank N. Then Gr(N, M) can be expressed as

Gr(N, M) = GLN (R) \ MN×M(R).

here GLN (R) is the general linear group of rank N. This expression means that other basis (g1, . . . , gN ) =
f1, . . . , fN )H for any H ∈ GLN (R) spans the same subspace, that is, A → HT A GLN (R) acting from the left).
otice here that the freedom in the A-matrix with GLN (R) can be fixed by expressing A in the reduced row echelon

orm (RREF). We then assume throughout this paper that the A-matrix is in the RREF, and show that the A-matrix
lays a crucial role in our discussion on the asymptotic behavior of the initial value problem.

Now using the Binet–Cauchy Lemma for the determinant, the τ-function of (2.2) can be expressed in the form,

τ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎝

E1 E2 · · · · · · EM

k1E1 k2E2 · · · · · · kMEM

...
...

. . .
. . .

...

kN−1
1 E1 kN−1

2 E2 · · · · · · kN−1
M EM

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a21 · · · aN1

a12 a22 · · · aN2

...
...

. . .
...

...
...

. . .
...

a1M a2M · · · aNM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
1≤j1<j2<···<jN≤M

ξ(j1, j2, . . . , jN )E(j1, j2, . . . , EN ), (2.6)

here ξ(j1, . . . , jN ) is the N × N minor of the A-matrix with N columns marked by (j1, . . . , jN ), and E(j1, . . . , jN )
s given by

E(j1, . . . , jN ) = Wr(Ej1 , . . . , EjN ) =
∏
l<m

(kjm − kjl
)Ej1 · · ·EjN .

rom formula (2.6), one can see that for a given A-matrix,
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

if a column of A has only zero elements, then the exponential term Em with m being the column index never appear
in the τ-function, and
if a row of A has only the pivot as non-zero element, then En with n being the row index can be factored out from
the τ-function, i.e. En has no contribution to the solution.

dx.doi.org/10.1016/j.matcom.2010.05.025
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For A-matrix with no such cases, we call it irreducible, because the τ-function with reducible matrix can be obtained
by a matrix with smaller size.

We are also interested in non-singular solutions. Since the solution is given by u = 2∂2
x(ln τ), the non-singular

solutions are obtained by imposing the non-negativity condition on the minors,

ξ(j1, j2, . . . , jN ) ≥ 0, for all 1 ≤ j1 < j2 < · · · < jN ≤ M. (2.7)

This condition is not only sufficient but also necessary for the non-singularity of the solution for any initial data. We
call a matrix having the condition (2.7) totally non-negative matrix.

2.2. Line-soliton solution and the notations

Let us here present the simplest solution, called one line-soliton solution, and introduce several notations to describe
the solution. A line-soliton solution is obtained by a τ-function with two exponential terms, i.e. the case N = 1 and
M = 2 in (2.5): With the A-matrix of the form A = (1 a), we have

τ = E1 + aE2 = 2
√

ae(1/2)(θ1+θ2)/2 cosh
1

2
(θ1 − θ2 − ln a),

The parameter a in the A-matrix must be a ≥ 0 for a non-singular solution (i.e. totally non-negative A-matrix), and
it determines the location of the soliton solution. Since a = 0 leads to a trivial solution, we consider only a > 0 (i.e.
irreducible A-matrix). Then the solution u = 2∂2

x(ln τ) gives

u = 1

2
(k1 − k2)2 sech2 1

2
(θ1 − θ2 − ln a).

Thus the peak of the solution is located along the line θ1 − θ2 = ln a. We here emphasize that the line-soliton appears
at the boundary of two regions, in each of which either E1 or E2 becomes the dominant exponential term, and because
of this we also call this soliton [1, 2]-soliton solution (or soliton of [1, 2]-type). In general, the line-soliton solution of
[i, j]-type with i < j has the following structure (sometimes we consider only locally),

u = A[i,j] sech2 1

2
(K[i,j] · x − Ω[i,j]t + Θ[i,j]) (2.8)

with some constant Θ[i,j]. The amplitude A[i,j], the wave vector K[i,j] and the frequency Ω[i,j] are defined by

A[i,j] = 1

2
(kj − ki)

2

K[i,j] =
(
kj − ki, k

2
j − k2

i

)
= (kj − ki)

(
1, ki + kj

)
,

Ω[i,j] = k3
j − k3

i = (kj − ki)(k2
i + kikj + k2

j ).

The direction of the wave-vector K[i,j] = (Kx
[i,j], K

y
[i,j]) is measured in the counterclockwise from the x-axis, and it is

given by

K
y
[i,j]

Kx
[i,j]

= tan Ψ[i,j] = ki + kj.

Notice that Ψ[i,j] gives the angle between the line K[i,j] · x = const and the y-axis (See Fig. 1). Then a line-soliton
(2.8) can be written in the form with three parameters A[i,j], Ψ[i,j] and x0

[i,j],

u = A[i,j] sech2

√
A[i,j]

2
(x + y tan Ψ[i,j] − C[i,j]t − x0

[i,j]), (2.9)

2 2 2 0
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

withC[i,j] = ki + kikj + kj = (1/2)A[i,j] + (3/4) tan Ψ[i,j]. For the parameter x[i,j] giving the location of the line-
soliton, we also use the notation,

x0
[i,j] = − 1

kj − ki

Θ[i,j], (2.10)

dx.doi.org/10.1016/j.matcom.2010.05.025
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Fig. 1. One line-soliton solution of [i, j]-type and the corresponding chord diagram. The left figure shows the soliton solution, u(x, y, t) with
the amplitude A[i,j] and the angle Ψ[i,j] which are, respectively, given by A[i,j] = 1

2 (ki − kj)2 and tan Ψ[i,j] = ki + kj . Throughout this paper, the
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orizontal and vertical axes in the figures of soliton solutions are x and y, respectively, and the solutions are shown in the contour lines with colors
ndicating the magnitudes. The right panel shows the corresponding chord diagram. The upper oriented chord represents the part of [i, j]-soliton
or y � 0 and the lower one for y � 0. Here the horizontal line is the coordinate for the k-parameters, and in this example, ki = −0.5 and kj = 1,
hich give tan Ψ[i,j] = 0.5 and A[i,j] = 9/8.

ith Θ[i,j] in (2.8) which is determined by the A-matrix and the k-parameters. For multi-soliton solutions, one can
nly define the location of each [i, j]-soliton using the asymptotic position in the xy-plane either x � 0 or x � 0
we mainly consider the cases where the solitons are not parallel to the y-axis), and we use the notation x+

[i,j] (or
−
[i,j]) which describes the x-intercept of the line determined by the wave crest of [i, j]-soliton in the region x � 0 (or
� 0) at t = 0. In Fig. 1, we illustrate an example of one line-soliton solution. In the right panel of this figure, we

how a chord diagram which represents this soliton solution. Here the chord diagram indicates the permutation of the
ominant exponential terms Ei and Ej in the τ-function, that is, with the ordering ki < kj , Ei dominates in x � 0,
hile Ej dominates in x � 0. This representation of the line-solitons in terms of the chord diagrams is the key concept

hroughout the present paper. (See section 2.3 below for the precise definition of the chord diagrams.)
For each soliton solution of (2.9), the wave vector K[i,j] and the frequency Ω[i,j] satisfy the soliton-dispersion

elation, i.e.,

4Ω[i,j]K
x
[i,j] = (Kx

[i,j])
4 + 3(Ky

[i,j])
2
. (2.11)

he soliton velocity V[i,j] defined by K[i,j] · V[i,j] = Ω[i,j] is given by

V[i,j] = Ω[i,j]

|K[i,j]|2 K[i,j] = k2
i + kikj + k2

j

1 + (ki + kj)2 (1, ki + kj).

ote in particular that C[i,j] = k2
i + kikj + k2

j > 0, and this implies that the x-component of the velocity is always
ositive, that is, any soliton propagates in the positive x-direction. On the other hand, one should note that any small
erturbation propagates in the negative x-direction, that is, the x-component of the group velocity is always negative.
his can be seen from the dispersion relation of the KP equation for a linear wave φ = exp(ik · x − iωt) with the
ave-vector k = (kx, ky) and the frequency ω,

ω = −1

4
k3
x + 3

4

k2
y

kx

,

rom which the group velocity of the wave is given by

v = ∇ω =
(

∂ω

∂kx

,
∂ω

∂ky

)
=
(

−3

4

(
k2
x + k2

y

k2
x

)
,

2

3

ky

kx

)
.

his is similar to the case of the KdV equation, and we expect that asymptotically soliton separates from dispersive
adiations. Physically this implies that soliton is a supersonic wave due to its nonlinearity (recall that the velocity of
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

hallow water wave is proportional to the square root of the water depth, and the KP equation in the form (2.1) describes
he waves in the moving frame with this velocity in the x-direction).

Stability of one-soliton solution was shown in the original paper by Kadomtsev and Petviashvii [9], and this may
e stated as follows: For any ε > 0 and any r > 0, there exists δ > 0 so that if the initial wave u(x, y, 0):=u0(x, y)

dx.doi.org/10.1016/j.matcom.2010.05.025
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satisfies

‖u0 − u0
exact‖L2(D0

r ) < δ,

for some exact soliton solution, ut
exact:=A0 sech2√A0/2(x + y tan Ψ0 − C0t − x0) with appropriate constants A0, Ψ0

and x0 (recall C0 = (1/2)A0 + (3/4) tan2 Ψ0), then the stability implies that the solution ut(x, y):=u(x, y, t) satisfies

‖ut − ut
exact‖L2(Dt

r) < ε, for t → ∞,

where Dt
r is a circular disc with radius r moving with the soliton, i.e.

Dt
r = {(x, y) ∈R2 : (x − x0(t))2 + (y − y0(t))2 ≤ r2},

with (x0(t), y0(t)) at any point on the soliton, x0(t) + y0(t) tan Ψ0 = C0t + x0. Here ‖f‖L2(D) is the usual L2-norm of
f (x, y) over a compact domain D ⊂ R2, i.e.

‖f‖L2(D):=
(∫∫

D

|f (x, y)|2 dx dy

)1/2

.

This stability implies a separation of the soliton from the dispersive radiations (non-soliton parts) as in the case of the
KdV soliton. We would like to prove the similar statement for more general initial waves. However there are several
difficulties for two-dimensional stability problem in general. In this paper, we will give a numerical study for some
special cases where the initial waves consist of two semi-infinite line-solitons with V- or X-shape.

Finally we remark that a line-soliton having the angle Ψ0 ≈ π/2 has an infinite speed, and of course it is beyond
the assumption of the quasi-two-dimensionality. We also emphasize that the structure of the solution for y � 0 can be
different from that in y � 0, that is, the set of asymptotic solitons in y � 0 can be different from that in y � 0. This
difference is a consequence of the resonant interactions among solitons as we can see throughout the paper.

2.3. Classification theorems

Now we present the main theorems obtained in [2,3] for the classification of soliton solutions generated by the
τ-functions with irreducible and totally non-negative A-matrices:

Theorem 2.1. Let{e1, . . . , eN} be the pivot indices, and let{g1, . . . , gM−N} be non-pivot indices for an N × M

irreducible and totally non-negative A-matrix. Then the soliton solution generated by the τ-function with the A-matrix
has the following asymptotic structure:

(a) Fory � 0, there are N line-solitons of [en, jn]-type forn = 1, . . . , N.
(b) Fory � 0, there areM − N line-solitons of [im, gm]-type form = 1, . . . , M − N.

Herejn(> en) and im(< gm) are determined uniquely from the A-matrix.

The unique index pairings [en, jn] and [im, gm] in Theorem 2.1 have a combinatorial interpretation. Let us define
the pairing map π : {1, 2, . . . , M} → {1, 2, . . . , M} such that{

π(en) = jn, n = 1, . . . , N,

π(gm) = im, m = 1, . . . , M − N,
(2.12)

where en and gm are respectively the pivot and non-pivot indices of the A-matrix. Then we have:

Theorem 2.2. The pairing map π is a bijection. That is, π ∈ SM , whereSM is the group of permutation for the index
set{1, 2, . . . , M}, i.e.
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

π =
(

e1· · ·eN g1· · ·gM−N

j1· · ·jN i1· · ·iM−N

)
.

Note in particular that the corresponding π is the derangement, i.e. π has no fixed point.

dx.doi.org/10.1016/j.matcom.2010.05.025
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ig. 2. Example of the chord diagram. This shows π = (46523817). Each chord joining ith and jth marked points represents the line-soliton of
i, j]-type. Here the numbers in the figure indicate the k-parameters, i.e. j means kj .

Theorem 2.2 shows that the pairing map π for an (M − N, N)-soliton solution has N excedances, i.e. π(i) > i for
= 1, . . . , N, and the excedance set is the set of pivot indices of the A-matrix. We represent each soliton solution with

he chord diagram defined as follows:

(i) There are M marked points on a line, each of the point corresponds to the k-parameter.
(ii) On the upper side of the line, there are N chords (pairings), each of them connects two points on the line representing

π(en) = jn for n = 1, . . . , N, i.e. the excedance jn > en.
iii) On the lower side of the line, there are M − N chords representing π(gm) = im for m = 1, . . . , M − N, i.e. the

deficiency im < gm.

In Fig. 2, we illustrate an example of the chord diagram which represents the derangement,

π =
(

1 2 3 4 5 6 7 8

4 6 5 2 3 8 1 7

)
or simply π = (46523817).

he diagram then shows that the set of excedances is {1, 2, 3, 6}, and the corresponding soliton solution consists of
he asymptotic line-solutions of [1, 4]-, [2, 6]-, [3, 5]- and [6, 8]-types in y � 0 and of [1, 7]-, [2, 4]-, [3, 5]- and
7, 8]-types in y � 0.

. Exact solutions

Here we present several exact solutions generated by smaller size N × M matrices with N ≤ 3 and M ≤ 4. Those
olutions give a fundamental structure of general solutions, and we will show that some of those solutions appear
aturally as asymptotic solutions of the KP equation for certain classes of initial waves related to the rogue wave
eneration [20,22,23,7]. The detailed discussions and the formulae given in this section can be found in [3].

.1. Y-shape solitons: resonant solutions

We first discuss the resonant interaction among line-solitons, which is the most important feature of the KP equation
see e.g. [14,18,10]). To describe resonant solutions, let us consider the τ-function with M = 3, that is, the τ-function
as three exponential terms {E1, E2, E3}. In terms of the τ-function in the form (2.3), those are given by the cases
N = 1, M = 3) and (N = 2, M = 3).

Let us first study the case with N = 1 and M = 3, where the A-matrix is given by

A = ( 1 a b ).

he parameters a, b in the matrix are positive constants, and the positivity implies the irreducibility and the regularity
f the solution. The τ-function is simply given by

τ = E1 + aE2 + bE3.
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

Note that if one of the parameters is zero, then the τ-function consists only two exponential terms and it gives one
ine-soliton solution, i.e. reducible case.) With the ordering k1 < k2 < k3, the solution u = 2∂2

x(ln τ) consists of [1, 3]-
oliton for y � 0 and [1, 2]- and [2, 3]-solitons for y � 0. Taking the balance between two exponential terms in the
-function, one can see that those line-solitons of [1, 3]- and [2, 3]-types are localized along the lines given in (2.9), i.e.

dx.doi.org/10.1016/j.matcom.2010.05.025
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x + y tan Ψ[i,j] − C[i,j]t = x0
[i,j] for [i, j] = [1, 3] and [2, 3] where the locations x0

[i,j] are determined by the A-matrix
(see (2.10)),

x0
[1,3] = − 1

|3, 1| ln b, x0
[2,3] = − 1

|3, 2| ln
b

a
. (3.1)

where |i, j|:=ki − kj . The shape of solution generated by τ = E1 + aE2 + bE3 with a = b = 1 (i.e. at t = 0 three
line-solitons meet at the origin) is illustrated via the contour plot in the first row of Fig. 3. This solution represents a
resonant solution of three line-solitons, and the resonant condition is given by

K[1,3] = K[1,2] + K[2,3], Ω[1,3] = Ω[1,2] + Ω[2,3],

which are trivially satisfied with K[i,j] = (kj − ki, k
2
j − k2

i ) and Ω[i,j] = k3
j − k3

i . The chord diagram corresponding
to this soliton is shown in the right panel of the first raw in Fig. 3, and it represents the permutation π = (312).

Let us now consider the case with N = 2 and M = 3: We take the A-matrix in the form,

A =
(

1 0 −b

0 1 a

)
,

where a and b are positive constants. Then the τ-function is given by

τ = E(1, 2) + aE(1, 3) + bE(2, 3),

with E(i, j) = (kj − ki)EiEj for i < j. In this case we have [1, 2]- and [2, 3]-solitons for y � 0 and [1, 3]-soliton for
y � 0, and this solution can be labeled by π = (231). Those line-solitons of [1, 2]- and [1, 3]-types are localized along
the lines, x + y tan Ψ[i,j] − C[i,j]t = x0

[i,j] with

x0
[1,2] = − 1

|2, 1| ln

( |3, 2|
|3, 1|

b

a

)
, x0

[1,3] = − 1

|3, 1| ln

( |3, 2|
|2, 1|b

)
, (3.2)

where |i, j|:=ki − kj . In the lower figures of Fig. 3, we illustrate the solution in this case. Notice that this figure can
be obtained from (2, 1)-soliton in the upper figure by changing (x, y) → (−x, −y). Here the parameters a and b in the
A-matrix are chosen, so that x0

[1,2] = x0
[1,3] = 0, that is, all of those soliton solutions meet at the origin at t = 0.

Fig. 3. Examples of (2, 1)- and (1, 2)-soliton solutions and the chord diagrams. The k-parameters are given by (k1, k2, k3) = (−5/4, −1/4, 3/4).
The right panels are the corresponding chord diagrams. For both cases, the parameters in the A-matrices are chosen so that at t = 0 three line-solitons
meet at the origin as shown in the left panels.

dx.doi.org/10.1016/j.matcom.2010.05.025
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3.2. N = 1, 3 and M = 4 cases

Let us first discuss the case with N = 1 and M = 4, that is, the A-matrix is given by

A = (1 a b c),

where a, b and c are positive constants. The τ-function is simply written in the form

τ = E1 + aE2 + bE3 + cE4.

In this case, we have (3, 1)-soliton solution consisting of one line-soliton of [1, 4]-type for y � 0 and three line-solitons
of [1, 2]-, [2, 3]- and [3, 4]-types for y � 0. This solution is labeled by π = (4 1 2 3). The upper figures in Fig. 4 shows
the time evolution of the solution of this type. We set a = b = c = 1 of the A-matrix, so that all four line-solitons meet
at the origin at t = 0.

For N = 3, any irreducible and totally non-negative A-matrix has the form,

A =

⎛
⎜⎝

1 0 0 c

0 1 0 −b

0 0 1 a

⎞
⎟⎠ ,

where a, b and c are positive constants. The τ-function is then given by

τ = E(1, 2, 3) + aE(1, 2, 4) + bE(1, 3, 4) + cE(2, 3, 4),

with E(l, m, n) = (kn − km)(kn − kl)(km − kl)ElEmEn. This gives (1, 3)-soliton solution which is dual to the case of
N = 1, that is, [1, 4]-soliton for y � 0 and [1, 2]-, [2, 3]- and [3, 4]-solitons for y � 0. The corresponding label for
this solution is given by π = (2 3 4 1). The lower figures in Fig. 4 shows the time evolution of this type. Here we set
a, b, c of the A-matrix as

a = |1, 2, 3|
|1, 2, 4| , b = |1, 2, 3|

|1, 3, 4| , c = |1, 2, 3|
|2, 3, 4| ,

where |l, m, n|:=|(kn − km)(kn − kl)(km − kl)|, so that all four solitons meet at the origin at t = 0.

Fig. 4. Examples of (3, 1)- and (1, 3)-soliton solutions. The solution in the upper figures are generated by the 1 × 4 A-matrix with (k1, k2, k3, k4) =
(−√

3, −1, 1,
√

3). The symmetry in the k-parameters implies that [1, 4]- and [2, 3]-solitons are parallel to the y-axis. The lower figures are generated
by the 3 × 4 A-matrix with (k1, k2, k3, k4) = (−1, −1/(2

√
2), 1/(2

√
2), 1).

dx.doi.org/10.1016/j.matcom.2010.05.025
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Fig. 5. The chord diagrams for seven different types of (2, 2)-soliton solutions. Each diagram parametrizes a unique cell in the totally non-negative
Grassmannian Gr(2, 4).

3.3. N = 2 and M = 4 cases

By a direct construction of the derangements of S4 with two exedances (i.e. N = 2), one can easily see that there
are seven cases with 2 × 4 irreducible and totally non-negative A-matrices. Then the classification theorems imply
that we have a (2, 2)-soliton solution associated to each of those A-matrices. We here discuss all of those (2, 2)-soliton
solutions with the same k-parameters given by (k1, k2, k3, k4) = (−7/4, −1/4, 3/4, 3/2), and show how each A-matrix
chooses a particular set of line-solitons. In Fig. 5, we illustrate the corresponding chord diagrams for all those seven
cases, from which one can find the asymptotic line-solitons in each case.

3.3.1. The case π = (3412)
From the chord diagram in Fig. 5, one can see that the asymptotic line-solitons are given by [1, 3]- and [2, 4]-types

for both y → ±∞. The solution in this case corresponds to the top cell of Gr(2, 4), and the A-matrix is given by

A =
(

1 0 −c −d

0 1 a b

)
,

where a, b, c, d > 0 are free parameters with D:=ad − bc > 0. This is the generic solution on the maximal dimensional
cell, and it is called T-type (after [12]). The most important feature of this solution is the generation of four intermediate
solitons forming a box at the intersection point. Those intermediate solitons are identified as [1, 2]-, [2, 3]-, [1, 4]-
and [3, 4]-solitons, and they may be obtained by cutting the chord diagram of (3412)-type at the crossing points.
For example, if we cut the chords of [1, 3] and [2, 4] at the crossing point, we obtain either pair of {[1, 2], [3, 4]} or
{[1, 4], [2, 3]}. The first pair appears in the lower and upper edges of the box, and the second pair in the right and
left edges. Fig. 6 shows the time evolution of the solution of this type. The parameters a, b, c and d in the A-matrix
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

determine the locations of solitons, their phase shifts and the on-set of the box-shaped interaction pattern: Those are
given by

b = |2, 1|
|4, 1| se

Θ+
[1,3] , c = |2, 1|

|3, 2| se
Θ+

[2,4] ,
a

d
= |4, 2|

|3, 1| r, D = |2, 1|
|4, 3| s, (3.3)

Fig. 6. Example of (3412)-type soliton solution (T-type). The asymptotic solitons are [1, 3]- and [2, 4]-types for both y → ±∞. The intermediate
solitons forming a box-shape pattern are given by [1, 2]-,[1, 4]-, [2, 3]- and [3, 4]-solitons.

dx.doi.org/10.1016/j.matcom.2010.05.025
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where s is for the phase shift, Θ+
[i,j] for the location of [i, j]-soliton for x � 0 (recall the definition below (2.10), i.e.

x+
[i,j] = −1/(|j, i|)−Θ+

[i,j]/|j, i| gives the x-intercept of the line of the [i, j]-soliton for x � 0 at t = 0), and r for the on-

set of the box. The phase shifts for [1, 3]- and [2, 4]-solitons are given by �x[i,j]:=x−
[i,j] − x+

[i,j] = −1/(|j, i|)−ΘT/|j, i|
with

ΘT = ln

( |1, 4||2, 3|
|1, 2||3, 4|

bc

D

)
. (3.4)

In Fig. 6, we have chosen those parameters as s = 1, Θ+
[1,3] = Θ+

[2,4] = 0 and r = 1, so that at t = 0 the solution
forms an X-shape without phase shifts and opening of a box at the origin. In Fig. 6, the amplitudes are A[1,3] = 25/8
and A[2,4] = 49/36. Among the soliton solutions for N = 2 and M = 4, this solution is the most complicated and
interesting one. As you can see below, this solution contains all other solutions as some parts of this solution, that is,
as explained above, all six possible solitons (i.e. C4

2 = 6) appear in this solution.

3.3.2. The case π = (4312)
From the chord diagram in Fig. 5, one can see that the asymptotic line-solitons are given by [1, 4]- and [2, 3]-solitons

for y � 0 and [1, 3]- and [2, 4]-solitons in y � 0. The A-matrix in this case is given by

A =
(

1 0 −b −c

0 1 a 0

)
,

where a, b, c > 0 are free parameters. Fig. 7 illustrates an example of this solution. The parameters in the A-matrix
determine the locations of the line-solitons in the following form,

a = |2, 1|
|3, 1|e

Θ−
[2,3] , b = |2, 1|

|3, 2|e
Θ−

[1,3] and c = |3, 1|
|4, 3|e

Θ+
[1,4] .

The Θ±
[ij] represent the locations of the [i, j]-soliton for x � 0 and x � 0, and the three line-solitons determine the

location of the other one. We here take the parameters Θ−
[1,3] = Θ+

[1,4] = Θ−
[2,3] = 0, so that all those four solitons meet

at the origin at t = 0. Notice here that the pattern in the lower part (y < 0) of the solution is the same as that of the
previous one, T-type. This can be also seen by comparing the chord diagrams of those two cases.

3.3.3. The case π = (3421)
The asymptotic line-solitons in this case are given by [1, 3]- and [2, 4]-solitons for y � 0 and [1, 4]- and [2, 3]-

solitons in y � 0. The A-matrix has the form,

A =
(

1 0 0 −c

0 1 a b

)
,

Fig. 7. Example of (4312)-type soliton solution. The asymptotic solitons are [1, 4]- and [2, 3]-types for y � 0 and [1, 3]- and [2, 4]-types for y � 0.
The intermediate solitons are [3, 4]-type for t = −6 and [1, 2]-type for t = 6.

dx.doi.org/10.1016/j.matcom.2010.05.025
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Fig. 8. Example of (3421)-type soliton solution. The asymptotic solitons are given by [1, 3]-and [2, 4]-types for y � 0 and [1, 4]- and [2, 3]-types
for y � 0. This solution is dual to the previous one of (4312)-type, i.e. the duality is given by (x, y, t) → (−x, −y, −t).

where a, b, c > 0 are free parameters. Fig. 8 illustrates the evolution of the solution of this type. The parameters in the
A-matrix are related to the locations of the line-solitons,

a = |2, 1|
|3, 1|e

Θ+
[2,3] , b = |2, 1|

|4, 1|e
Θ−

[2,4] and c = |2, 1|
|4, 2|e

Θ−
[1,4] .

This solution can be considered as a dual of the previous case (b), that is, two sets of line-solitons for y � 0 and y � 0
are exchanged. Here we take Θ±

[i,j] = 0 for those pairs (i, j) = (1, 4), (2, 3) and (2, 4), hence all those four solitons
meet at the origin at t = 0. Note here that now the upper pattern of the solution is the same as that of the T-type. So if
one cuts Figs. 7 and 8 along the x-axis and glues the lower half of Fig. 7 together with the upper half of Fig. 8, we can
obtain Fig. 6 (T-type). This can be observed from the corresponding chord diagrams.

One should also note that this solution is “dual” to the previous one in the sense that the patterns of those solutions
are symmetric with respect to the change (x, y, t) ↔ (−x, −y, −t).

3.3.4. The case π = (2413)
The asymptotic line-solitons are given by [1, 2]- and [2, 4]-solitons for y � 0 and [1, 3]- and [3, 4]-solitons for

y � 0. The A-matrix is given by

A =
(

1 0 −c −d

0 1 a b

)
,

where a, b, c, d > 0 with ad − bc = 0. Those parameters are related to the locations of the line-solitons,

b = |2, 1|
|4, 1|e

Θ−
[2,4] , c = |2, 1|

|3, 2|e
Θ−

[1,3] and
d

b
= |4, 1|

|4, 2|e
Θ+

[1,2] ,

with a = bc/d. Fig. 9 illustrates the evolution of the solution of this type. For the case that all the solitons meet at
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

the origin at t = 0, we set all Θ[i,j] to be zero. Notice that the nonlinear interaction generates the intermediate soliton
of [1, 4]-type in t < 0. This has the maximum amplitude among the (local) solitons appearing in the solution. It is
interesting to note that the maximum amplitude soliton might be expected from the chord diagram, that is, this soliton
is generated by the resonant interactions of [1, 2] + [2, 4] = [1, 4] for y > 0 and [1, 3] + [3, 4] = [1, 4] for y < 0.

Fig. 9. Example of (2413)-type soliton solution. The asymptotic solitons are [1, 2]- and [2, 4]-types for y � 0 and [1, 3]- and [3, 4]-types for y � 0.
The intermediate solitons are [1, 4]-type in t = −6 and [2, 3]-type in t = 6.

dx.doi.org/10.1016/j.matcom.2010.05.025
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ig. 10. Example of (3142)-type soliton solution. The asymptotic solutions are [1, 3]- and [3, 4]-types for y � 0 and [1, 2]- and [2, 4]-types
ory � 0. Notice the duality of this with (2413)-type in the previous example.

ne should also note that the left patterns in Fig. 9 including [1, 4]-soliton for t < 0 and [2, 3]-soliton for t > 0 are the
ame as those in Fig. 6 (T-type).

.3.5. The case π = (3142)
The asymptotic line-solitons are given by [1, 3]- and [3, 4]-solitons in y � 0 and [1, 2]- and [2, 4]-solitons in y � 0.

he A-matrix has the form,

A =
(

1 a 0 −c

0 0 1 b

)
,

here a, b, c > 0. We represent those parameters in the following form which is particularly useful for our stability
roblem discussed in the next section,

a = |3, 1|
|3, 2| se

Θ+
[2,4] , b = |3, 1|

|4, 1| se
Θ+

[1,3] and c = |3, 1|
|4, 3| s. (3.5)

ere Θ+
[i,j] represent the location of the [i, j]-soliton in x � 0, and s represents the location of the other line-solitons

n x � 0, that is the generation of the intermediate line-solitons either [1, 4]- or [2, 3]-type (c.f. the case (c) in Section
). This solution is dual to the previous one of π = (2413). In fact, Fig. 10 illustrates the dual behavior of the evolution
n the sense of the reverse of time. Here we take s = 1 and Θ+

[1,3] = Θ+
[2,4] = 0, so that all solitons meet at the origin

t t = 0. As in the previous case, the large amplitude soliton of [1, 4]-type is generated by the resonant interaction. In
articular, this solution can be used to explain the Mach reflection observed in shallow water [14,7,3].

.3.6. The case π = (4321)
The asymptotic line-solitons are [1, 4]- and [2, 3]-types for both y → ±∞. Since those solitons can be placed both

n nearly parallel to the y-axis, this type of solutions fits better in the physical assumption for the derivation of the KP
quation, i.e. a quasi-two-dimensionality. This is then referred to as P-type (after [12]). The situation is similar to the
dV case, for example, two solitons must have different amplitudes, A[1,4] > A[2,3]. The A-matrix is given by

A =
(

1 0 0 −b

0 1 a 0

)
.

he parameters are expressed by

a = |4, 2|
|4, 3|e

Θ+
[2,3] and b = |3, 1|

|4, 3|e
Θ+

[1,4] . (3.6)

+

Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
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here Θ[i,j] represents the location of the [i, j]-soliton in x > 0 (the wave front) (notice the phase shifts for the solitons).

ig. 11 illustrates the evolution of the solution of this type. We here set Θ+
[i,j] = 0, and hence the solitons in x > 0 (the

ave front) meet at the origin at t = 0. Note here that there is a phase shift due to the interaction, and the shift is in the
egative direction due to the repulsive force in the interaction similar to the case of KdV solitons. The phase shifts are

dx.doi.org/10.1016/j.matcom.2010.05.025
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Fig. 11. Example of (4321)-type soliton solution (P-type). The asymptotic solitons are [1, 4]- and [2, 3]-types for both y → ±∞. The pattern of
the solution is stationary, and the interaction generates a negative phase shift of the solitons.

given by �x[i,j] = −(1/|j, i|)−ΘP/|j, i| with

ΘP = ln

( |4, 2||3, 1|
|2, 1||4, 3|

)
> 0. (3.7)

This negative phase shift is due to the repulsive force in the interaction as in the case of the KdV solitons. One should
also note that the interaction point moves in the negative y-direction, because the larger soliton of [1, 4]-type propagates
faster than the other one. Those [1, 4]- and [2, 3]-solitons only appear as the intermediate solitons in the solution of
T-type, that is, they form a part of the box in Fig. 6.

3.3.7. The case π = (2143)
The asymptotic line-solitons are [1, 2]- and [3, 4]-types for both y → ±∞. This solution was used originally to

describe two soliton solution, and it is called O-type (after [12]). The interaction property for solitons with equal
amplitudes has been discussed using this solution. However this solution becomes singular, when those solitons are
almost parallel to each other and close to the y-axis, contrary to the assumption of the quasi-two dimensionality for the
KP equation [14]. The A-matrix is given by

A =
(

1 a 0 0

0 0 1 b

)
.

Notice that this A-matrix is the limit of that for (3142)-type with c → 0 and k2 → k3. We will further discuss this
issue in the next section when we study the initial value problem with V-shape initial wave. The parameters a and b
are expressed by

a = |4, 1|
|4, 2|e

Θ+
[1,2] and b = |3, 2|

|4, 2|e
Θ+

[3,4] . (3.8)
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

where Θ+[i, j] represents the location of the wave front consisting of [1, 2]- and [3, 4]-solitons. Fig. 12 illustrates the
evolution of this type solution. Here we take all Θ+

[i,j] = 0, the solitons in x > 0 (the wave front) meet at the origin at
t = 0. The phase shifts of those solitons are positive due to an attractive force in the interaction, and they are given by

Fig. 12. Example of (2143)-type soliton solution (O-type). The asymptotic solitons are [1, 2]- and [3, 4]-types for both y → ±∞. The pattern of
the solution is stationary, and has a positive phase shift in the solitons.

dx.doi.org/10.1016/j.matcom.2010.05.025
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x[i,j] = −(1/|j, i|)−ΘO/|j, i| with

ΘO = ln

( |4, 1||3, 2|
|3, 1||4, 2|

)
< 0. (3.9)

hen k2 approaches to k3, the phase shift gets larger, and the interaction part of the solution is getting to be close to
1, 4]-soliton as a result of the resonant interaction with [1, 2]- and [3, 4]-solitons at k2 = k3. This is the main argument
f the paper [14] about the discussion on the Mach reflection of shallow water waves. Note also that those [1, 2]- and
3, 4]-solitons appear as the intermediate solitons forming a box of T-type as shown in Fig. 6.

. Numerical simulations

The main purpose of the numerical simulation is to study the interaction properties of line-solitons, and we will
how that the solution of the initial value problem with certain types of initial waves asymptotically approaches to
ome of the exact solutions discussed in the previous section. This implies a stability of those exact solutions under
he influence of certain deformations (notice that the deformations in our initial waves are not so small).

The initial value problem considered here is essentially an infinite energy problem in the sense that each line-soliton
n the initial wave is supported asymptotically in either y � 0 or y � 0, and the interactions occur only in a finite domain
n the xy-plane. In the numerical scheme, we consider the rectangular domain D = {(x, y) : |x| ≤ Lx, |y| ≤ Ly}, and
ach line-soliton is matched with a KdV soliton at the boundaries y = ±Ly. In this section, we explain the details of
ur numerical scheme and give an error estimate of the scheme.

We also remark that for one-dimensional problem (e.g. the KdV equation), the accuracy for numerical scheme is
sually tested by using the integrals such as the total mass and energy. However, in our study, we are dealing with
wo-dimensional problem with non-vanishing boundary values which provide energy flow into the numerical domain.
o we cannot use the integrals for the accuracy test of our numerical scheme. We then check the accuracy with the
aximum errors in the Fourier domain and the L2-estimates in comparison with the exact solutions of the KP equation.

.1. Numerical scheme

Using the so-called window technique [21,23], we first transform our non-periodic solution u having non-vanishing
oundary values into a function v rapidly decaying near the boundaries y = ±Ly, so that we consider the function v

o be periodic in y. With the window function W(y), this can be expressed by the decomposition of the solution u, i.e.

u = v + (1 − W)u with v = Wu.

e take the window function W(y) in the form of a super-Gaussian,

W(y) = exp

(
−an

∣∣∣∣ y

Ly

∣∣∣∣
n)

, (4.1)

here an and n are positive constants (we choose an = (1.111)n ln 10 with n = 27 [23]). We assume that near the
oundaries y = ±Ly, the solution can be described by exact line-solitons (i.e. we take Ly large enough so that the
nteraction will not influence those parts near boundaries up to certain finite time). We then consider the transformation
n the form,

u = v + (1 − W)u0, (4.2)

here u0 consists of exact line-solitons satisfying

(1 − W)u0 = (1 − W)u.
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

his assumption prevents any disturbance from the boundary, and keeps the stability of the far fields consisting of
ell-separated line-solitons. In x direction, we choose Lx large enough so that u(±Lx, y) ≈ v(±Lx, y) ≈ 0 initially.
e are interested in studying the asymptotic behavior near the interaction point, and we do not expect to see any

trong effect from the boundary region in a short time (recall that the system has a finite group velocity for waves
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with non-zero kx-component and the assumption of quasi-two-dimensionality, i.e. k2
y ≈ kx, in the derivation of the KP

equation). With the transformation (4.2), we have the equation for v,

∂x

(
4∂tv + 6v∂xv + ∂3

xv
)

+ 3∂2
yv = 6(1 − W)∂x (Wu0∂xu0 − ∂x(vu0)) + 3(2W ′∂yu0 + W ′′u0). (4.3)

Assuming the solution v to be periodic in both x and y with zero boundary condition at |y| = Ly, we solve (4.3) by
using fast Fourier transform (FFT).1 For a convenience, let us rescale the domain D = {(x, y) : |x| ≤ Lx, |y| ≤ Ly}
with D:={(X, Y ) : |X| ≤ π, |Y | ≤ π}, i.e.

X = π

Lx

x, Y = π

Ly

y.

Then (4.3) becomes

∂X

(
∂tv + Pv∂Xv + Q∂3

Xv
)

+ R∂2
Yv = F, (4.4)

where F is the right hand side of (4.3) with the scalings, and

P = 3π

2Lx

, Q = π3

4L3
x

, and R = 3πLx

4L2
y

.

Under the periodic assumption of v and the mean-free condition, we have

v(X, Y, t) =
∞∑

l=−∞

∞∑
m=−∞

v̂(l, m, t)ei(lX+mY ).

Here the Fourier transformation v̂:=F(v) is given by

v̂(l, m, t) = 1

(2π)2

∫ π

−π

∫ π

−π

v(X, Y, t)e−i(lX+mY ) dX dY,

and the equation becomes

∂tv̂ + i

(
Rm2

l
− Ql3

)
v̂ + il

P

2
N(v̂) = 1

il
F(F ), for l /= 0, (4.5)

with

N(v̂) = F(v2).

Since our solutions do not satisfy the mean-free condition, i.e.
∫ Lx

−Lx
u dx = 0, our scheme based on the FFT generates

some error (the zero mode cannot satisfy (4.5) for those solutions discussed in this paper). However, within our
computational times, we confirmed that the accuracy of our scheme is not contaminated by the error introduced from
the zero modes (see below). We also checked the error due to the violation of the periodicity due to the mean-free
condition even in the case where the zero modes of u is forced to be zero. The algorithm seems to be quite stable within
our computational times. The zero mode effect was also discussed numerically in [11].2

Let c = Rm2/l − Ql3 and V̂ = eict v̂. Then we have

∂tV̂ + il
P

eictN(V̂ e−ict) = 1
eictF(F ), for l /= 0. (4.6)
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

2 il

We write this equation in the form of time evolution,

∂tV̂ = G(t, V̂ ).

1 The periodic assumption implies that one needs to have the mean-free function in the x-direction, i.e.
∫ Lx

−Lx
udx = 0. Although our solutions

do not satisfy this condition, we confirmed that the overall error including the violation of the condition remained small within our accuracy (see
below).

2 We would like to thank a referee for pointing out the issue of the zero mode for the numerical integration of the KP equation based on FFT
method.
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Fig. 13. Numerical accuracy test on T-type solution shown in Fig. 6. The graph shows the estimate of max|F(vt) − F(vt
exact)| as a function of the
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umber of Fourier modes N × N/2 for t = 0, 3 and 6. The error is decreasing exponentially with respect to N until it saturates at round of error
10−16 for N ≈ 1280, 1472 and 1536 for t = 0, 3 and 6, respectively. The numerical domain is D = [−64, 64] × [−32, 32].

nd use the 4th order Runge-Kutta (RK4) method to solve the equation. We use a pseudo-spectral method to evaluate
onlinear term N(v̂) in (4.6). For the function F on the right hand side of (4.3), one needs to evaluate the derivatives
f the exact solution u0. However, these derivatives have rather complex formulae, especially those of T-type solution,
e estimate the F in the 2nd order difference. Thus the numerical solutions are expected to be of 2nd order accuracy
hen there are enough Fourier modes in space and the solutions are vanished in large x.
In order to verify the accuracy of the method, we provide two tests. The first test intends to answer the ques-

ion on how many Fourier modes are needed to ensure machine accuracy in space for the solution v of (4.3).
he second test shows the overall algorithm is 2nd order accurate. In Fig. 13, we show the maximum error in the
ourier modes of the T-type solution in the sense that we estimate max|F(vt) − F(vt

exact)| with respect to the num-
er of Fourier modes N in both x- and y-directions for the case shown in Fig. 6. On the computational domain
= [−64, 64] × [−32, 32], machine accuracy ≈ 10−16 is reached for N ≈ 1280, 1472 and 1536 for t = 0, 3 and

, respectively. Since the T-type solution develops a box at later time, it requires more Fourier modes to well repre-
ent the solution. From this test with N = 1536, we find that we need roughly 1536/(2 × 64) = 12 Fourier modes
er 1 unit in x to reach 10−16 accuracy. Notice that it might take longer time to run such a fine mesh for a very
arge computational domain. We choose to use 8 Fourier modes per unit length in both x- and y-directions for all
he simulations discussed in this paper. The spacial error is within 10−10 and it can also speed up the computa-
ion. In Table 1, we summarize the error of the solution given by ‖ut − ut

exact‖L2(D)/‖ut
exact‖L2(D) for two different

ime steps �t = 0.01 and �t = 5 × 10−3 on D = [−128, 128] × [−16, 16] with 2048 × 256 Fourier modes. It can
e clearly seen that the order of convergence is 2 because the error decreases by a factor around 4 when the time
tep is halved. If we take �t = 5 × 10−3 and keep running the simulation up to t = 12, the magnitude of the
rror is always within 2.5 × 10−2. In the following simulations, the errors of the solutions are at this magnitude or
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

maller.

able 1
he convergence test of our numerical scheme on the domain D = [−128, 128] × [−16, 16] with 2048 × 256 Fourier modes. The table shows the
rror ‖ut − ut

exact‖L2(D)/‖ut
exact‖L2(D) with T-type exact solution for the time steps �t = 10−2 and 5 × 10−3. This indicates that our scheme is of

nd order accuracy in time.

�t = 10−2 �t = 5 × 10−3 Order

= 1 1.046 × 10−2 2.645 × 10−3 1.98
= 2 1.893 × 10−2 4.353 × 10−3 2.12
= 3 2.507 × 10−2 5.986 × 10−3 2.07
= 4 2.992 × 10−2 7.732 × 10−3 1.95
= 5 3.523 × 10−2 9.675 × 10−3 1.86
= 6 4.211 × 10−2 1.194 × 10−2 1.82

dx.doi.org/10.1016/j.matcom.2010.05.025
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5. Numerical results

Now we present the results of the direct numerical simulation of the KP equation with the following two types of
initial waves consisting of two line-solitons. In particular, we fix the amplitude of one of the line-solitons, and place
these line-solitons in the symmetric shape with respect to the x-axis. This then implies that each profile of the initial
wave is determined by two parameters A0 (the amplitude of other soliton) and Ψ0 > 0 (the angle of the wave-vector
of the soliton in y < 0):

(i) V-shape wave consisting of two semi-infinite line-solitons, i.e. u(x, y, 0) = u0
1(x, y) + u0

2(x, y) with⎧⎪⎨
⎪⎩

u0
1(x, y) = A0 sech2

√
A0

2
(x − y tan Ψ0) × H(y),

u0
2(x, y) = 2 sech2(x + y tan Ψ0) × H(−y),

(5.1)

where H(z) is the unit step function,

H(z) =
{

1 if z ≥ 0,

0 if z < 0.

Here one should note that the initial locations x+
[i,j] are zero for both line-solitons, that is, they cross the origin at

t = 0. The shifts of x+
[i,j] observed in the simulations provide the information of the interaction property.

(ii) X-shape wave of the linear combination of two line-solitons, i.e. u(x, y, 0) = u0
1(x, y) + u0

2(x, y) with⎧⎪⎨
⎪⎩

u0
1(x, y) = A0 sech2

√
A0

2
(x − y tan Ψ0),

u0
2(x, y) = 2 sech2(x + y tan Ψ0).

(5.2)

Again note that the initial locations are x+
[i,j] = 0.

These initial waves have been considered in certain physical models of interacting waves [14,7,20,22,3,13,25]. In
particular, in [20,22,13,25], the V-shape initial waves were considered to study the generation of large amplitude waves
in shallow water.

The main result of this section is to show numerically that those initial waves converge asymptotically to some of
the exact solutions presented in Section 3. Here what we mean by the convergence is as follows: We first show that
the solution ut(x, y) at the intersection point of V- or X-shape generates a pattern due to the resonant interaction, and
we then identify the pattern near the resonant point with that given by some of the exact solutions ut

exact(x, y). The
convergence is only in a local sense, and we use the following (relative) error estimate,

E(t):=‖ut − ut
exact‖2

L2(Dt
r) / ‖ut

exact‖2
L2(Dt

r), (5.3)

where Dt
r is the circular disc defined by

Dt
r:=

{
(x, y) ∈R2 : (x − x0(t))2 + (y − y0(t))2 ≤ r2

}
.

Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
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Here the center (x0(t), y0(t)) is chosen as the intersection point of two lines determined from the corresponding exact
solution identified by the following steps:

1. For a given initial wave, we first identify the type of exact solution (i.e. the chord diagram) from the formulae,
A[i,j] = 1

2 (ki − kj)2 and tan Ψ[i,j] = ki + kj . This then gives the exact solution with the corresponding A-matrix.

dx.doi.org/10.1016/j.matcom.2010.05.025
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Note here that the entries of the A-matrix are not determined yet.
2. We then minimize the error function E(t) of (5.3) at certain large time t = T0 by changing the entries in the A-matrix,

that is, we consider

Minimize
A−matrix

E(T0). (5.4)

The minimization is achieved by adjusting the solution pattern with the exact one, that is, the pattern determines
the A-matrix whose entries give the locations of all line-solitons including the intermediate solitons in the solution.
With this A-matrix, the center (x0(t), y0(t)) of the circular domain Dt

r is given by the intersection point of the lines,

x + y tan Ψ[il,jl] − C[il,jl]t = x+
[il,jl] for l = 1, 2, (5.5)

where the locations x+
[il,jl] are expressed in terms of the A-matrix (see Section 3). Here we have A[i1,j1] =

A0, A[i2,j2] = 2 and Ψ[i2,j2] = −Ψ[i1,j1] = Ψ0. The time T0 may be taken as T0 = 0, but for most of the cases,
we need T0 to be sufficiently large. This implies that the solutions have nontrivial location shifts, i.e. x+

[i,j] /= 0 in
the solution.

3. We then confirm that E(t) further decreases for a larger time t > T0 up-to a time t = T1 > T0, just before the effects
of the boundary enter the disc Dt

r (those effects include the periodic condition in x and a mismatch on the boundary
patching).

We take the radius r in Dt
r large enough so that the main interaction area is covered for all t < T0, but Dt

r should be
kept away from the boundary to avoid any influence coming from the boundaries. The time T1 > T0 gives an enough
time to develop a pattern close to the corresponding exact solution, but it is also limited to avoid any disturbance
from the boundaries for t < T1. In this paper, we give T0 and T1 based on the observation of the numerical results.
Unfortunately, we do not have a systematic way to estimate those values, T0, T1 and the radius r. We are currently
working on this problem, and hope will be able to report the complete analysis in a future communication.

5.1. V-shape initial waves

The initial waveform is illustrated in the left panel of Fig. 14. The right figure shows the (incomplete) chord diagrams
corresponding to the initial V-shape waves; that is, the upper chord represents the (semi-infinite) line-soliton in y > 0
and the lower one represents the (semi-infinite) line-soliton in y < 0. We have done the numerical simulations with
six different cases which are marked in Fig. 14 as (a) through (f). The main result in this section is to show that each
incomplete chord diagram representing the initial wave gets a completion with minimum additional chords which
represents the asymptotic pattern of the solution. Here the minimal completion implies that for a given incomplete

Fig. 14. V-shape initial waves. Each line of the V-shape is a semi-infinite line-soliton. We set those line-solitons to meet at the origin, and fix
the amplitude of the soliton in y < 0 to be 2. A0 is the amplitude of the soliton in y > 0. The right panel shows the incomplete chord diagrams
corresponding to the choice of the values A0 and Ψ0. There is no corresponding exact soliton solution on the dotted line of k2 = k3.
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chord diagram, one adds extra chords with minimum total length so that the complete chord diagram represents a
derangement (see also [13]). For our examples of the cases (a) through (f), we have the following completions:

a) With k1 = k2, the completion is π =
(

1 3 4

3 4 1

)
, i.e. add [3, 4]-chord in y > 0. This implies that [3, 4]-soliton

appears in the asymptotic solution in y > 0, and the corresponding exact solution is a (1, 2)-soliton (cf. Fig. 3).

b) With k3 = k4, the completion is π =
(

1 2 3

3 1 2

)
, i.e. add [1, 2]-chord in y < 0 which appears in the asymptotic

solution, and the corresponding solution is a (2, 1)-soliton (cf. Fig. 3).
c) The completion is π = (3142), i.e. add [1, 2]-chord in y < 0 and [3, 4]-chord in y > 0. These corresponding

solitons appear behind those initial solitons (cf. Fig. 10).
d) The completion is π = (2143), i.e. add [1, 2]-chord in y < 0 and [3, 4]-chord in y > 0. The soliton solution is of

O-type, and the semi-infinite initial solitons extend to generate other half with the phase shift (cf. Fig. 12).
e) The minimal completion is π = (2341), i.e. add [1, 2]- and [3, 4]-chords in y > 0. This is a (1, 3)-soliton. (Note

that the initial wave is a front half of P-type soliton solution, but the minimal completion is not of P-type.) Since
[1, 2]-soliton in y > 0 appears ahead of the wavefront consisting of [2, 3]-soliton in y > 0 and [1, 4]-soliton in
y < 0, the generation of [1, 2]-soliton is impossible. The [1, 2]-soliton is a virtual one, but it gives an influence on
bending the [1, 4]-soliton in y > 0 (see below for the details).

(f) The minimal completion is π = (4123), i.e. add [1, 2]- and [3, 4]-chords in y < 0. The is a (3, 1)-type, but again
we note that [3, 4]-soliton in y < 0 is a virtual one (i.e. it locates ahead of the wavefront similar to the previous
case (e)). We also observe the bending of [1, 4]-soliton in y > 0 under the influence of this virtual soliton (see
again below for the details).

5.1.1. The case (a)
This is a critical case withk1 = k2. The line-solitons of V-shape initial wave are [1, 3]-soliton in y > 0 and [1, 4]-

soliton in y < 0. We take the following values for the amplitudes and angles of the those solitons,⎧⎪⎨
⎪⎩

A[1,3] = A0 = 1

2
, tan Ψ[1,3] = −1

2
= − tan Ψ0,

A[1,4] = 2, tan Ψ[1,4] = 1

2
= tan Ψ0.

With the formulas for the amplitude A[i,j] = 1
2 (ki − kj)2 and the angle tan Ψ[i,k] = ki + kj , we have the k-parameters

(k1 = k2, k3, k4) = (−3/4, 1/4, 5/4). The corresponding exact solution is of (1, 2)-type.
The figures in the first row of Fig. 15 illustrate the result of the direct numerical simulation. The domain of

computation is [−192, 192] × [−48, 48] and there are 8 Fourier modes in every unit length. The simulation shows a
generation of third wave at the point of the intersection of those initial solitons. This generation is due to the resonant
interaction, and this may be identified as [3, 4]-soliton of the exact solution, that is, the resonance condition gives
[1, 3] + [3, 4] = [1, 4] and completes the incomplete chord diagram. The generation of [3, 4]-soliton may be also
understood by decomposing the exact solution into two parts, say uexact = u + v, where u is the solution of the KP
equation with our initial wave of [1, 3]- and [1, 4]-solitons. Then v satisfies,

∂x(4∂tv + 6v∂xv + ∂3
xv) + 3∂2

yv = −6∂2
x(uv),

which is the KP equation with one extra term in the right hand side. If we assume that the initial solitons remain as
the part of the exact solution uexact, the product uv in the extra term has nonzero value only near the origin at t = 0
(this assumption is not totally correct, but the shifts of the initial solitons are very small for most of the cases). We then
expect v to be close to the solution of the KP equation with the initial wave of [3, 4]-soliton only for y > 0 and x < 0.
Since this [3, 4]-soliton is missing in the front half (x > 0), the edge of the wave gets a strong dispersive effect. Then
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

the edge of the solution v disperses away with a bow-shape wake propagating toward the negative x-axis as can be seen
in the simulation (cf. Fig. 15). Recall here that the dispersive waves (i.e. non-soliton parts) propagate in the negative
x-direction (see Section 3). Then the decay of the v solution at the front edge implies the appearance of the [3, 4]-soliton
in the exact solution as one can see from u = uexact − v. This argument may be also applied to other cases as well.
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Fig. 15. Numerical simulation of the case (a) in Fig. 14: The initial wave consists of [1, 3]-soliton in y > 0 and [1, 4]-soliton in y < 0. The figures
in the first row show the result of the direct simulation, the figures in the second row show the corresponding exact solution of (1, 2)-type, and the
bottom one represents the error function E(t) of (5.3) which is minimized at t = 10. The domain of the simulation is [−192, 192] × [−48, 48]. The
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ircle in the exact solution shows the domain Dt
r with r = 10 for the error function E(t). A dispersive radiation appearing behind the interaction

egion may be considered as a reaction of the generation of the third soliton of [3, 4]-type as a result of resonant interaction (see the text for the
etails).

Minimizing the error function E(t) at t = T0 = 10 with (5.4), we obtain the A-matrix of (1, 2)-type,

A =
(

1 0 −1.27

0 1 0.63

)
,

he minimization is achieved by adjusting the locations of the [1, 3]- and [1, 4]-solitons of the wavefront, and it gives
he shifts

x+
[1,3] = −0.0079, x+

[1,4] = −0.120.

The A-matrix is then obtained using (3.2)). Thus the new line-soliton of [3, 4]-type has a relatively large negative
hift. This may be explained as follows: The [3, 4]-soliton is generated as a part of the tail of [1, 4]-soliton, and in the
eginning stage of the generation, the [3, 4]-soliton has a small amplitude and propagates with slow speed. This causes
negative shift of this soliton. Also the negative shift in the [1, 4]-soliton is due to the generation of the [3, 4]-soliton,

.e. losing its momentum. The figures in the second row of Fig. 15 show the exact solutions generated by the τ-function
ith those parameters (k = k , k , k ) = (−3/4, 1/4, 5/4)) and the A-matrix given above. The circles in the figures
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

1 2 3 4
how Dt

r where we take r = 12 and the center is given by (x0(t) = (13/16)t − 0.0637, y0(t) = (3/4)t − 0.112). In the
ottom figures of Fig. 15, we plot the error function E(t) of (5.3). Fig. 15 indicates that the asymptotic solution seems
o converge to the exact solution of (1, 2)-type with the above A-matrix and the same k-parameters.
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5.1.2. The case (b)
This is also a critical case with k3 = k4. The line-solitons of V-shape initial wave are [1, 3]-soliton in y > 0 and

[2, 3]-soliton in y < 0. We take the amplitudes and angles of those solitons to be⎧⎪⎪⎨
⎪⎪⎩

A[1,3] = A0 = 49

8
, tan Ψ[1,3] = −3

4
= − tan Ψ0,

A[2,3] = 2, tan Ψ[2,3] = 3

4
= tan Ψ0.

This then gives the k-parameters (k1, k2, k3 = k4) = (−17/8, −5/8, 11/8). Fig. 16 illustrates the result of the numerical
simulation. The figures in the first row show the direct simulation of the KP equation. Notice again that a bow-shape
wake behind the interaction point corresponds to the v solution in the decomposition, u = uexact − v, and the decay of v

implies the appearance (or generation) of [1, 2]-soliton. Notice that v gives the [1, 2]-soliton part in the exact solution.
The figures in the second row show the corresponding exact solution of (2, 1)-type, whose A-matrix is obtained by
minimizing the error function E(t) at t = 6,

A = ( 1 1.15 1.21
)
.

The shifts of locations x+
[i,j] obtained in the minimization are given by

x+
[1,3] = −0.0545, x+

[2,3] = −0.0254,

Fig. 16. Numerical simulation of the case (b) in Fig. 14: The initial wave consists of [1, 4]- and [2, 4]-solitons in y > 0 and y < 0 respectively. The
figures in the first row show the result of the direct simulation, and the figures in the second row show the corresponding exact solution of (2, 1)-type.
The computational domain is [−192, 192] × [−48, 48], and the circle in the figures of the exact solution shows Dt

r with r = 12. The bottom graph
shows the error function E(t) of (5.3) which is minimized at t = 6.

dx.doi.org/10.1016/j.matcom.2010.05.025


Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

ARTICLE IN PRESS+Model
MATCOM-3449; No. of Pages 34

C.-Y. Kao, Y. Kodama / Mathematics and Computers in Simulation xxx (2010) xxx–xxx 23

using (3.1). Those negative shifts may be explained in the similar way as in the previous case. In those figures, the
domain Dt

r has r = 12 and its center (x0(t) = (157/64)t − 0.0399, y0(t) = −(11/8)t + 0.0194). The bottom graph in
Fig. 16 shows that the solution converges asymptotically to the exact solution of (2, 1)-type with the above A-matrix
and the same k-parameters.

5.1.3. The case (c)
The line-solitons of the initial wave are [1, 3]-soliton in y > 0 and [2, 4]-soliton in y < 0. We consider the case with

the larger soliton in y > 0, and take the amplitudes and angles of those solitons as{
A[1,3] = A0 = 2, tan Ψ[1,3] = −1 = − tan Ψ0,

A[2,4] = 2, tan Ψ[2,4] = 1 = tan Ψ0.

The k-parameters are then given by (k1, k2, k3, k4) = (−3/2, −1/2, 1/2, 3/2). The exact solution obtained by the
completion of the chord diagram is given by (3142)-type soliton solution. Fig. 17 illustrates the result of the numerical
simulation. The figures in the first row show the direct simulation of the KP equation. We observe a bow-shape wake
behind the interaction point. The wake expands and decays, and then we see the appearance of new solitons which form
resonant interactions with the initial solitons. One should note that the solution generates a large amplitude intermediate
soliton at the interaction point, and this soliton is identified as [1, 4]-soliton with the amplitude A[1,4] = 4.5. This
solution has been considered to describe the Mach reflection of shallow water waves, and the [1, 4]-soliton describes
the wave called the Mach stem [3,13].

Fig. 17. Numerical simulation of the case (c) in Fig. 14: The initial wave consists of [1, 3]-soliton in y > 0 and [2, 4]-soliton in y < 0. The figures
in the first row show the result of the direct simulation, and the figures in the second row show the corresponding exact solution of (3142)-type.
The computational domain is [−192, 192] × [−48, 48], and the circle in the middle figures shows Dt

r with r = 12. The bottom graph of the error
function E(t) which is minimized at t = 10. A large amplitude intermediate soliton is generated at the intersection point, and it corresponds to the
[1, 4]-soliton with the amplitude A[1,4] = 4.5.
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The figures in the second row in Fig. 17 show the corresponding exact solution of (3142)-type whose A-matrix is
found by minimizing E(t) at t = 10,

A =
(

1 1.92 0 −1.96

0 0 1 0.64

)

In the minimization to find the A-matrix, we adjust the locations of solitons including the intermediate solitons, and
using (3.5), we obtain

x+
[1,3] = x+

[2,4] = −0.01, s = 0.980.

Those values indicate that the solution is very close to the exact solution for all the time. The negative value of the shifts
x+

[i,j] is due to the generation of a large amplitude soliton [1, 4]-type (i.e. the initial solitons loose their momentum), and
s < 1 implies that the [1, 4]-soliton is generated after t = 0. Also note that the [1, 4]-soliton now resonantly interact
with [1, 3]- and [2, 4]-solitons to create new solitons [1, 2]- and [3, 4]-solitons (called the reflected waves as considered
in the Mach reflection problem [14,3,13]). This process then seems to compensate the shifts of incident waves, even
though we observe a large wake behind the interaction point. Notice that the wake disperses, and the exact solution
starts to appear as the wake decays (recall again the decomposition uexact = u + v (where v is the wake and u is the
solution).

The bottom graph in Fig. 17 shows a rapid convergence of the initial wave to (3142)-type soliton solution with those
parameters of the A-matrix and k values given above, and for the error function, we use Dt

r with r = 12.

5.1.4. The case (d)
The line-solitons of the initial wave are [1, 2]-soliton in y > 0 and [3, 4]-soliton in y < 0. This case corresponds

to the solitons with a large angle interaction. For simplicity, we consider a symmetric initial data with the initial wave
whose amplitudes and angles are given by⎧⎪⎨

⎪⎩
A[1,2] = A0 = 2, tan Ψ[1,2] = −12

5
= − tan Ψ0,

A[3,4] = 2, tan Ψ[3,4] = 12

5
= tan Ψ0.

The k-parameters are then given by (k1, k2, k3, k4) = (−11/5, −1/5, 1/5, 11/5). The completion of the chord diagram
gives O-type soliton solution, i.e. (2143)-type. This implies that the solution extends the initial solitons to the negative
x-direction with the same types, i.e. [1, 2]- and [3, 4]-types in y < 0 and y > 0, respectively. One should note that the
solution also generates the phase shift determined uniquely by the k-parameters. Fig. 18 illustrates the result of the
numerical simulation. The figures in the first row show the direct simulation of the KP equation. The wake behind the
interaction point has a large negative amplitude, and this corresponds to the v solution in uexact = u + v. The figures in
the second row show the corresponding O-type exact solution whose A-matrix is determined by minimizing the error
function E(t) at t = 10,

A =
(

1 1.91 0 0

0 0 1 0.17

)

Because of our symmetric initial data, we consider the shifts x+
[1,2] = x+

[3,4] for the minimization, and using (3.8), we
obtain

x+
[1,2] = x+

[3,4] = −0.020.

The negative shifts imply the slow-down of the incidence waves due to the generation of the solitons extending the
initial solitons in the negative x-direction. Those new parts of solitons have the locations x−

[i,j]. The phase shifts

�x = x− − x+ for the line-solitons are calculated from (3.9), and they are
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

[i,j] [i,j] [i,j]

�x[1,2] = �x[3,4] = 0.593.

The positivity of the phase shifts is due to the attractive force between the line-solitons, and this explains the slow-down
of the initial solitons, i.e. the small negative shifts of x+

[i,j]. The bottom graph in Fig. 18 shows E(t) which is minimized
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Fig. 18. Numerical simulation of the case (d) in Fig. 14: The initial wave consists of [1, 2]-soliton in y > 0 and [3, 4]-soliton in y < 0. The upper
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gures show the result of the direct simulation, and the figures in the second row show the corresponding exact solution of (2143)-type (O-type).
he domain of the simulation is [−160, 160] × [−32, 32] and the circle in the exact solution shows Dt

r with r = 12. Notice a large wake behind
he interaction point which extends the initial solitons. The bottom graph shows the error function E(t) which is minimized at t = 6.

t t = 6, and we take r = 12 for the domain Dt
r. One can see a rapid convergence of the solution to the O-type exact

olution with those parameters. One should however remark that for a case near the critical one with k2 = k3, there
xists a large phase shift in the soliton solution, and the convergence is very slow. Note that the case with k2 = k3
lso corresponds to the boundary of the previous case (c) (See Fig. 14), and the amplitude of the intermediate soliton
enerated at the intersection point reaches four times larger than the initial solitons at this limit. This large amplitude
ave generation has been considered as the Mach reflection problem of shallow water wave [14,20,3,13,23].

.1.5. The case (e)
The line-solitons of the initial wave are [2, 3]-soliton in y > 0 and [1, 4]-soliton in y < 0. We consider the solitons

arallel to the y-axis with the amplitudes,{
A[2,3] = A0 = 0.25, tan Ψ[2,3] = 0 = − tan Ψ0,

A[1,4] = 2, tan Ψ[1,4] = 0 = tan Ψ0.

hen the k-parameters are given by (k1, k2, k3, k4) = (−1, −1/(2
√

2), 1/(2
√

2), 1). We also considered the case with
onzero angle (i.e. oblique to the y-axis with Ψ0 > 0), and we expected to see a P-type soliton as the asymptotic solution.
owever, the numerical simulation suggests that we do not see a solution of P-type, but the asymptotic solution is
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

omewhat close to the exact solution of (2341)-type as obtained by the minimal completion of the chord diagram.
he (2341)-type is a (1, 3)-type soliton solution with [1, 4]-soliton in y < 0 and [1, 2]-, [2, 3]- and [3, 4]-solitons in
> 0. Here one should note that the [1, 2]-soliton in y > 0 locates ahead of the wavefront consisting of [1, 4]- and

2, 3]-solitons, so that this soliton cannot be generated by the resonant interaction of those [1, 4]- and [2, 4]-solitons.
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Fig. 19. Numerical simulation of the case (e) in Fig. 14: The initial wave consists of [2, 3]-soliton in y > 0 and [1, 4]-soliton in y < 0. The upper

figures show the result of the direct simulation, and the lower figures show the corresponding exact solution of (2341)-type obtained by the minimal
completion of the chord diagram given by the initial wave. The computational domain is [−192, 192] × [−32, 32]. Notice that the bending on the
initial [1, 4]-soliton appears near the point where the virtual[1, 2]-soliton intersects. The dispersive radiation behind the intersection point may be
the part of this [1, 4]-soliton.

Fig. 19 illustrates the result of the numerical simulation. The figures in the first row show the direct simulation of
the KP equation. We observe that the [1, 4]-soliton in y < 0 propagates faster and its tail extends to y > 0. Also note
that a large dispersive wake appearing in y < 0 has negative amplitude and disperses in the negative x-direction. On
the other hand, the tail part in y > 0 seems to have a resonant interaction with the [2, 3]-initial soliton and becomes a
new soliton. This behavior of the solution may be explained by the chord diagram of (2341)-type whose corresponding
exact solution is illustrated in the bottom figures in Fig. 19: The new soliton generated in y > 0 may be identified as
[3, 4]-soliton. Also we note that the bending of the [1, 4]-soliton observed in the simulation seems to appear at the point
where the [1, 2]-soliton has a resonant interaction with [1, 4]-soliton. This means that the intermediate soliton in the
exact solution is [2, 4]-soliton, and this soliton may give a good approximation of the bending part of the [1, 4]-soliton.
It is interesting to consider this [1, 2]-soliton as a virtual one, which is not visible but has an influence to the initial
solitons. This can be also understood by the similar argument using the decomposition uexact = u + v. In this case, the
initial data for v is given by the [1, 2]- and [3, 4]-solitons in uexact. Then the [3, 4]-soliton in uexact appears when the
solution v decays in this part. On the other hand, the decay of v in the [1, 2]-soliton part seems to occur only in the
region behind the front solitons as seen at t = 5. Non-decaying of the [1, 2]-soliton implies that [1, 2]-soliton never
appears in the solution u, because of the cancellation of uexact and v on this soliton part. We will give more details in a
future communication.

5.1.6. The case (f)
The line-solitons of the initial wave are [1, 4]-soliton in y > 0 and [2, 3]-soliton in y < 0. Contrary to the previous

case, we have now the larger soliton in y > 0 and the smaller one in y < 0. In a comparison, we also consider the
solitons parallel to the y-axis. We then take the amplitudes and angles of the those solitons as{

A[1,4] = A0 = 6, tan Ψ[1,4] = 0 = − tan Ψ0,

A[2,3] = 2, tan Ψ[2,3] = 0 = tan Ψ0.

Then the k-parameters are given by (k , k , k , k ) = (−√
3, −1, 1,

√
3). Since the upper [1, 4]-soliton propagates faster
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

1 2 3 4
than the lower one, the lower tail of this soliton appears and then resonates with the lower [2, 3]-soliton. Following the
similar arguments as in the previous case, we expect that (3, 1)-soliton is the corresponding exact solution which is of
(4123)-type as given by the minimal completion of the chord diagram. Fig. 20 illustrates the result of the numerical
simulation. The upper figures show the direct simulation, and the lower figures show the exact solution of (4123)-type.
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ig. 20. Numerical simulation of the case (f) in Fig. 14: The initial wave consists of [1, 4]-soliton in y > 0 and [2, 3]-soliton in y < 0. The upper
gures show the result of the direct simulation, and the lower figures show the corresponding exact solution of (4123)-type obtained by the minimal
ompletion of the chord diagram. The computational domain is [−192, 192] × [−32, 32]. Notice that the bending in the [1, 4]-soliton appears near
he intersection point with the v irtual [3, 4]-soliton, and the dispersive radiation observed in the simulation is a part of this [3, 4]-soliton.

s in the previous case (e), this case shows that the [3, 4]-soliton part in the exact solution does not appear in the solution
f the simulation, that is, the [3, 4]-soliton is a virtual one. This can be also explained with the similar argument as
n the previous case. Notice again that the [1, 4]-soliton in y > 0 has a virtual interaction with [3, 4]-soliton to get
ending near (x = 18, y = 7) at t = 6.

.2. X-shape initial waves

The initial waveform is illustrated in the left panel of Fig. 21. The right figure shows the chord diagrams corresponding
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

o the initial waves with the parameters (A0, tan Ψ0). We carried out four different cases marked with (g) through (j)
n Fig. 21. The main result in this section is to show that each simple sum of line-solitons gets asymptotically to the
xact solution corresponding to the chord diagram given by the initial wave. One should however note that those initial
aves are not the exact solutions, and the simulations provide stability analysis for those exact solutions. For example,

ig. 21. X-shape initial waves. Each line of the X-shape is an infinite line-soliton solution. We set those line-solitons to meet at the origin, and fix
he amplitude of the soliton with positive angle Ψ0 to be 2 (the corresponding chord is shown in the lighter color in each region). A0 is the amplitude
f the soliton with negative angle −Ψ0. The right panel shows the corresponding chord diagrams with the choice of the values A0 and Ψ0. There is
o exact solution for the degenerate cases marked by the dotted lines.
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if the exact solution has the phase shift, the asymptotic solution actually converges to this exact solution by generating
the correct phase shifts.

5.2.1. The case (g)
The initial wave consists of [1, 2]- and [3, 4]-soliton. To emphasize the phase shift appearing in the exact solution

of (2143)-type, we consider the initial solitons to be close to the boundary at k2 = k3 (but we cannot take the values
so close, since the generation of a large phase shift needs a long time computation). For simplicity, we also take a
symmetric initial wave whose amplitudes and angles of the initial solitons are given by{

A[1,2] = A0 = 2, tan Ψ[1,2] = −2.02 = − tan Ψ0

A[3,4] = 2 tan Ψ[3,4] = 2.02 = tan Ψ0

The k-parameters are then given by (k1, k2, k3, k4) = (−2.01, −0.01, 0.01, 2.01). The numerical simulation in Fig. 22
demonstrates the generation of the phase shifts after the interaction, that is, the line-solitons in the left side are accelerated
by their interaction. Note here that the interaction generates the dispersive wake behind the interaction point which
propagates in the negative x-direction.

Minimizing the error function E(t) at t = 12, we obtain the A-matrix,

A =
(

1 3.029 0 0

0 0 1 0.015

)

Fig. 22. Numerical simulation of the case (g) in Fig. 21: The initial wave is the sum of [1, 2]- and [3, 4]-solitons. The figures in the first row show
the numerical simulation, and the figures in the second row show the corresponding exact solution of (2143)-type, i.e. O-type. The domain of the
simulation is [−192, 192] × [−32, 32]. The bottom graph shows E(t) of (5.3) which is minimized at t = 12, and the circle of the exact solution
shows Dt

r with r = 12. Notice that a small dispersive radiation appears to generate the correct phase shifts.
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n the minimization by adjusting the locations of the solitons, we use x+
[1,2] = x+

[3,4] (due to the symmetry of the
olution), and then we obtain

x+
[1,2] = x+

[3,4] = −0.21.

he negative values are due to the generation of the positive phase shifts given by (3.9),

�x[1,2] = �x[3,4] = 1.963 > 0.

amely the accelerations of the back parts of the line-solitons (i.e. the positive phase shifts) imply the deceleration of
he front parts of solitons. The figures in the second row in Fig. 22 shows the corresponding O-type soliton solution
ith this A-matrix. The circle shows the domain Dt

r with r = 12. Notice the dispersive wake behind the interaction
oint in the simulation. The bottom graph in Fig. 22 shows the convergence of the solution to the O-type solution given
y those A-matrix and the same k-parameters.

.2.2. The case (h)
The initial wave is the sum of [1, 3]- and [2, 4]-soliton. The corresponding chord diagram is of (3412)-type (i.e.

-type), and we expect the generation of a box at the intersection point of those solitons. For simplicity, we consider a
ymmetric initial wave, and take the amplitudes and angles of those solitons to be{

A[1,3] = A0 = 2, tan Ψ[1,3] = −1 = − tan Ψ0

A[2,4] = 2 tan Ψ[2,4] = 1 = tan Ψ0

he k-parameters are then given by (k1, k2, k3, k4) = (−3/2, −1/2, 1/2, 3/2). Although T-type soliton appears for
maller angle Ψ0, one should not take so small value. For an example of the symmetric case, if we take Ψ0 = 0, we
btain the KdV 2-soliton solution with different amplitudes. So for the case with very small angle Ψ0, we expect to see
hose KdV solitons near the intersection point. However, the solitons expected from the chord diagram have almost
he same amplitude as the incidence solitons for the case with a small angle. The detailed study also shows that near
he intersection point for T-type solution at the time when all four solitons meet at this point (i.e X-shape), the solution
as a small amplitude due to the repulsive force similar to the KdV solitons (see also [4], where the initial X-shape
ave with small angle generates a large soliton at the intersection point). This then implies that our initial wave given
y the sum of two line-solitons creates a large dispersive perturbation at the intersection point (this can be also seen in
he next cases where we discuss the P-type solutions).

The figures in the first row in Fig. 23 illustrate the numerical simulation, which clearly shows an opening of a
esonant box as expected by the chord diagram of T-type. The corresponding exact solution is illustrated in the figures
n the second row, where the A-matrix of the solution is obtained by minimizing the error function E(t) of (5.3) at
= 6,

A =
(

1 0 −0.368 −0.330

0 1 1.198 0.123

)

n the minimization, we take x±
[1,3] = x±

[2,4] due to the symmetric profile of the solution, and adjust the on-set of the
ox (recall (3.3), and note that the symmetry reduces the number of free parameters to three). We obtain

x+
[1,3] = x+

[2,4] = 0.025, r = 3.63, s = 0.350.

he positive shifts of those [1, 3]- and [2, 4]-solitons in the wavefront indicate also the positive shift of the newly
enerated soliton of [1, 4]-type at the front. This is due to the repulsive force exists in the KdV type interaction
xplained above, that is, the interaction part in the initial wave has a larger amplitude than that of the exact solution,
o that this part of the solution moves faster than that in the exact solution. This difference may result as a shift of the
ocation of the [1, 4]-soliton. The phase shifts of the initial waves are obtained from (3.4),
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
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�x[1,3] = �x[2,4] = 0.549.

he relatively large value r > 1 indicates that the on-set of the box is actually much earlier that t = 0, and s < 1 shows
he positive phase shifts as calculated above.
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Fig. 23. Numerical simulation of the case (h) in Fig. 21: The initial wave is the sum of [1, 3]- and [2, 4]-solitons. The figures in the first row show the

numerical simulation, and the figures in the second row show the corresponding exact solution of (3412)-type, i.e. T-type. The computational domain
is [−192, 192] × [−48, 48], and the circle in the exact solution shows the domain Dt

r with r = 22. The bottom graph shows the error function E(t)
of (5.3) which is minimized at t = 6.

The bottom graph in Fig. 23 shows the evolution of the error function E(t) of (5.3) which is minimized at t = 6.
Note here that the circular domain Dt

r with r = 22 covers well the main feature of the interaction patterns for all the
time computed for t ≤ 7.

5.2.3. The case (i)
The initial wave consists of [1, 4]- and [2, 3]-soliton. The corresponding diagram is of (4321)-type (P-type), and

the exact solution of this type has negative (repulsive) phase shift. Here we show how the phase shift is generated in
the simulation. We take the amplitudes and angles of those solitons to be⎧⎨

⎩A[2,3] = A0 = 8

25
, tan Ψ[2,3] = −0.4 = − tan Ψ0

A[1,4] = 2 tan Ψ[1,4] = 0.4 = tan Ψ0

The k-parameters are then given by (k1, k2, k3, k4) = (−4/5, −3/5, 1/5, 6/5). In this case, we also note that taking a
very small angle Ψ0 may give a large perturbation to the exact solution, and one should have a large computation time to
see the convergence. The top figures in Fig. 24 show the numerical simulation. The simulation indicates the generation
of the phase shift in the lower part of the solution. This may be explained as follows: Since the [1, 4]-soliton propagates
faster than the [2, 3]-soliton, the intersection point moves in the upper direction, i.e. the positive y-direction. Then the
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

effect of the nonlinear interaction may be observed in the lower half (i.e. behind the interactions) of the solution, and it
generates the phase shifts. One should also note that the large bending of the [1, 4]-soliton in y < 0. This is due to the
interaction with the dispersive wake generated around the origin at t = 0, and notice that this bending part disperses
away. The figures in the second row in Fig. 24 show the corresponding exact solution of P-type whose A-matrix is

dx.doi.org/10.1016/j.matcom.2010.05.025
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Fig. 24. Numerical simulation of the case (i) in Fig. 21: The initial wave is the sum of [1, 4]- and [2, 3]-solitons. The figures in the first row show
t
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w
s
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l

he numerical simulation, and the figures in the second row show the corresponding exact solution of (4321)-type, i.e. P-type. The computational
omain is [−192, 192] × [−48, 48], and the circle in the exact solutions shows Dt

r with r = 10. The bottom graph shows the error function E(t)
f (5.3) which is minimized at t = 12. Note that the bending on the solitons disperses and the interaction pattern converges locally to that of the
orresponding exact solution.

btained by minimizing the error function E(t) of (5.3) at t = 12,

A =
(

1 0 0 −0.038

0 1 1.629 0

)

n the minimization, we adjust the location of the line-solitons at the wavefront, and using (3.6), we obtain

x+
[2,3] = −0.125, x+

[1,4] = −0.54.

otice that the larger shifts in the [1, 4]-soliton, which can be also observed in the simulation. This shift is due to the
epulsive force appearing at the intersection point (recall that the exact solution has a smaller amplitude at this point).
he phase shifts of the P-type solution is given by (3.7),

�x[1,4] = −1.10, �x[2,3] = −2.75.

hose large phase shifts are also observed in the simulation, and the bending regions are getting separated from the
ntersection point with the correct phase shifts. The bottom graph in Fig. 24 shows the decay of the error function E(t)
ith Dt

r for r = 10. We also note the saturation E(t) after t = 11, which may be due to the large deformation of the
olution, and we may need to perform a larger domain computation.
Please cite this article in press as: C.-Y. Kao, Y. Kodama, Numerical study of the KP equation for non-periodic waves, Math.
Comput. Simul. (2010), doi:10.1016/j.matcom.2010.05.025

.2.4. The case (j)
This case is similar to the previous one with [1, 4]- and [2, 3]-soliton in the initial wave. However in this case, the

arger soliton of [1, 4]-type has a negative angle (propagating in the negative y-direction), and we expect that the phase

dx.doi.org/10.1016/j.matcom.2010.05.025
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shift now appear in the upper half of the solution. We take the amplitudes and angles of those solitons to be

⎧⎪⎪⎨
⎪⎪⎩

A[1,4] = A0 = 169

32
, tan Ψ[1,4] = −1

4
= − tan Ψ0

A[2,3] = 2 tan Ψ[2,3] = 1

4
= tan Ψ0

The k-parameters are then given by (k1, k2, k3, k4) = (−7/4, −7/8, 9/8, 3/2). The figures in the first row in Fig. 25
show the numerical simulation. One can observe a dispersive wake is generated by a large perturbation in the initial
wave near the origin, and then the wake pushes the [1, 4]-soliton forward. Also the large bending of the [2, 3]-soliton
near the origin is due to the interaction with the wake. Since the [1, 4]-soliton propagates much faster than the other one,
the intersection point moves in the negative y-direction. We can see a clear separation between the dispersive waves
causing the deformation of solitons and the intersection points of P-type. The figures in the second row in Fig. 25
illustrate the corresponding P-type solution whose A-matrix is obtained by minimizing the error function E(t) at t = 8.
We take the radius r = 10 for a good separation of the dispersive perturbation from the steady P-type soliton part. With
this minimization, we get

A =
(

1 0 0 −0.299

0 1 8.549 0

)

Fig. 25. Numerical simulation of the case (j) in Fig. 21: The initial wave is the sum of [1, 4]- and [2, 3]-solitons. The figures in the first row
show the numerical simulation, and the figures in the second row show the corresponding exact solution of (4321)-type, i.e. P-type. The domain
of the simulation is [−192, 192] × [−64, 64], and the circle in the middle figures shows Dt

r with r = 10. The bottom graph illustrates the error
function E(t) of (5.3) which is minimized at t = 8. The graph shows a further reduction of the error, that is, the convergence of the solution to the
corresponding exact solution even with a drastic change of the error at the initial stage.

dx.doi.org/10.1016/j.matcom.2010.05.025
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n the minimization, we adjust the locations of the line-solitons at the wavefront, and using (3.6), we obtain

x+
[1,4] = 0.627, x+

[2,3] = 0.923.

he positive shifts are due to the repulsive interaction at the intersection point as observed in the simulation. The phase
hifts of those incidence solitons are given by (3.7),

�x[1,4] = −0.934, �x[2,3] = −1.518.

otice that the [1, 4]-soliton behind the [2, 3]-soliton shifts x−
[1,4] = x+

[1,4] + �x[1,4] = −0.307, and it gets a larger shift
n the upper part. The large bending in the simulation is generated by a strong perturbation generated at the intersection
oint at t = 0. However, the bending part disperses and the intersection point gets away from this part.

The bottom graph in Fig. 25 shows the decay of the error. We emphasize that the error function gets a rapid change
n the early times. This implies that a drastic change in the profile of the solution due to a large perturbation to the
xact solution. However after t = 3 the solution has a monotone convergence to the exact solution, implying that the
ispersive waves are getting away from the domain Dt

r as we expected.

. Conclusion

In this paper, we studied numerically the interaction feature of the KP equation for the solutions consisting of small
umber of line-solitons. We started to provide a brief review of the classification theorem for soliton solutions of the
P equation. In particular, we remarked that each soliton solution can be expressed by a unique chord diagram which

ontains the information of the asymptotic line-solitons of the solution in y ± ∞. We then performed the numerical
tudy of the initial value problems using a pseudo-spectral method with window technique. We considered a special
lass of the initial waves with V- and X-shape which consist of two distinct line-solitons. This class of initial data was
onsidered to study some physical problem related to the generation of large amplitude waves, e.g. the Mach reflection
henomena in shallow water. We observed the separation of the exact soliton solution from dispersive radiations,
imilar to the solitons in the KdV equation where the initial wave evolves into a sum of solitons and dispersive wave
rains propagating opposite direction to the solitons. This leads to a convergence of the initial wave to certain exact
olution. Here we proposed a notion of the local convergence in the sense that the L2 error is measured in a compact
omain which covers the main part of the interaction of two soliton solutions forming V- or X-shape in the solution.
hen the separation implies that dispersive radiations eventually escape from the compact domain which is moving
long the exact soliton solution. We also confirmed that the exact solution in the convergence is predicted by the
inimal completion of the (partial) chord diagram describing the initial V-shape wave. Here the minimal completion
eans that the resulting chord diagram should give the unique derangement (permutation without fixed points) and

he corresponding solution has the smallest total length of the chords.
Our present study indicates the stability of some of the exact solutions, and we expect that our study can provide

seful information even in the case of the solutions including a large number of line-solitons.
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